Groupby object

A conforming implementation of the dataframe API standard must provide and support a groupby object with the following API:

class GroupBy(*args, **kwargs)

GroupBy object.

Note that this class is not meant to be constructed by users. It is returned from DataFrame.group_by.

Methods

__abstractmethods__ = frozenset({})
__init__(*args, **kwargs)
__parameters__ = ()
__subclasshook__()

Abstract classes can override this to customize issubclass().

This is invoked early on by abc.ABCMeta.__subclasscheck__(). It should return True, False or NotImplemented. If it returns NotImplemented, the normal algorithm is used. Otherwise, it overrides the normal algorithm (and the outcome is cached).

aggregate(*aggregation: Aggregation) DataFrame

Aggregate columns according to given aggregation function.

Examples

>>> df: DataFrame
>>> pdx = df.__dataframe_namespace__()
>>> df.group_by('year').aggregate(
...     pdx.Aggregation.sum('l_quantity').rename('sum_qty'),
...     pdx.Aggregation.mean('l_quantity').rename('avg_qty'),
...     pdx.Aggregation.mean('l_extended_price').rename('avg_price'),
...     pdx.Aggregation.mean('l_discount').rename('avg_disc'),
...     pdx.Aggregation.size().rename('count_order'),
... )
all(*, skip_nulls: bool | Scalar = True) DataFrame
any(*, skip_nulls: bool | Scalar = True) DataFrame
max(*, skip_nulls: bool | Scalar = True) DataFrame
mean(*, skip_nulls: bool | Scalar = True) DataFrame
median(*, skip_nulls: bool | Scalar = True) DataFrame
min(*, skip_nulls: bool | Scalar = True) DataFrame
prod(*, skip_nulls: bool | Scalar = True) DataFrame
size() DataFrame
std(*, correction: float | Scalar = 1, skip_nulls: bool | Scalar = True) DataFrame
sum(*, skip_nulls: bool | Scalar = True) DataFrame
var(*, correction: float | Scalar = 1, skip_nulls: bool | Scalar = True) DataFrame