
2021 report -
Python Data
APIs Consortium

Executive summary

03 22

25
07

09

06

What’s next in 2022

History

Motivation for starting
Data APIs

Dataframe interchange
protocol

27

30

Acknowledgements

Additional content

Consortium formation
and goals

11

Progress in year 1

Table of
Contents

02

11 a)Timeline
12 b)Organizational Goals
14 c)Tooling
16 d)Methodology

22 a) Current state
24 b) Adoption
24 c) Next steps

27 a) Members
29 b) Contributors
29 c) Sponsors

30 a) Blog posts
30 b) Talks
31 c) Panels

31 b) Webinars
31 c) Podcasts

18

Array API standard
18 a) Current state
20 b) Adoption
21 c) Next steps

03

Executive summary

Over the past decade, we’ve witnessed increased fragmentation

within the Python data ecosystem. This fragmentation largely

stems from the increased popularity of data science, numerical

computation, and deep learning and the proliferation of new

libraries intended to serve those needs. While the growth of

new libraries and frameworks has contributed to significant

innovation within the ecosystem, the resulting fragmentation

has a cost, as users and downstream library maintainers cannot

readily interoperate among the various libraries and must

frequently develop programs which only target a single library.

The Python Data APIs consortium aims to address this problem

by standardizing the fundamental data structures of arrays and

dataframes and an associated set of common APIs for working

with those data structures, thus facilitating interchange and

interoperation.

04

To fulfill this aim, the consortium invited
industry stakeholders and maintainers of
array and dataframe libraries to participate in
the standardization decision-making process.
That decision-making process had the
following objectives for 2021:

Define a standardization methodology.

Develop the tooling necessary to support the standardization methodology.

Publish an array API standard RFC.

Publish a dataframe interchange protocol RFC.

FInalize 2021.0x API standards after community review.

After releasing the 2021.0x array API standard and dataframe interchange

protocol, focus shifted to their adoption for the remainder of 2021 and

continuing into early 2022. Evolving alongside the specifications, reference

library implementations provide guidance for specification adoption by other

libraries and frameworks. This coevolution ensures specification alignment and

lays the foundation for the 2022.0x revision of the array and dataframe API

standards. For more information, consult the formal text of the respective

specifications:

Array API: https://data-apis.org/array-api/latest/

Dataframe interchange protocol:

https://data-apis.org/dataframe-protocol/latest/index.html

05

History
While the Python programming language was not designed
for numerical computing, the language gained initial
popularity in the scientific and engineering community soon
after its release. The first array computing library for numerical
and scientific computing in Python was Numeric, developed
in the mid-1990s. To better accommodate this library and its
use cases, Python’s syntax was extended to include indexing
syntax.

In the early 2000s, a similar library, Numarray, introduced a
more flexible data structure. Numarray had faster operations
for large arrays. However, the library was slower for small
arrays. Subsequently, both Numeric and Numarray coexisted
to satisfy different use cases.

In early 2005, NumPy was written to unify Numeric and
Numarray as a single array package by porting Numarray’s
features to Numeric. This effort was largely successful and
resolved the fragmentation at the time, and, for roughly a
decade, NumPy was the only widely used array library.
Building on NumPy, pandas was subsequently introduced in
2008 in order to address the need for a high performance,
flexible tool for performing quantitative analysis on labeled
tabular data.

06

Figure 1. Downstream library silos. Across the Python computing landscape, downstream libraries have
little choice but to tailor their implementations to a specific array library (as indicated by the grey
vertical boxes) due to API fragmentation and non-portability. A goal of this consortium is to allow
downstream libraries to break out of their silos and seamlessly support multiple array libraries.

The genesis for the consortium grew out of many conversations among
maintainers during 2019-2020. During those conversations, it quickly became
clear that any attempt to write a new reference library to fix the current
fragmentation was infeasible. Unlike in 2005, too many different use cases and
varying stakeholders now exist. Furthermore, the speed of innovation of both
hardware and software is simply too great. In May 2020, an initial group of
maintainers and industry stakeholders assembled to form the Consortium for
Python Data API Standards to begin drafting specifications for array and
dataframe APIs, which could then be adopted by each of the existing array and
dataframe libraries and any new libraries which arose.

Over the past 5 years, the rise of deep learning and the emergence of new
hardware has led to a proliferation of new libraries and a corresponding
fragmentation within the PyData array and dataframe ecosystem. These
libraries often borrowed concepts from, or entirely copied, the APIs of older
libraries, such as NumPy, and then modified and evolved those APIs to address
new needs and use cases. While the communities of each individual library
discussed interchange and interoperation, until the founding of this
consortium, no process for coordination among libraries arose to avoid further
fragmentation and to arrive at a common set of API standards.

07

Motivation for starting
Data APIs

Today, Python users have a wealth of choice for libraries and
frameworks for numerical computing, data science, machine
learning, and deep learning. New frameworks pushing forward
the state of the art in these fields appear every year. One
unintended consequence of all this activity and creativity has
been fragmentation in the fundamental building
blocks—multidimensional arrays (a.k.a. tensors) and
dataframes—that underpin the Python data ecosystem. Tensors
are fragmented among Tensorflow, PyTorch, NumPy, CuPy,
MXNet, Xarray, Dask, and others. Dataframes are fragmented
among pandas, PySpark, cuDF, Vaex, Modin, Dask, Ibis, Apache
Arrow, and more.

Figure 2. Ecosystem fragmentation. Summary of libraries that depend on or extend
individual array libraries.

08

This fragmentation comes with significant costs, from reinvention and
implementation of arrays and dataframes to the proliferation of user guides
providing guidance on how to convert between, and interoperate among,
libraries. Too often, the APIs of each library are largely similar, but each have
enough differences that end users have to relearn and rewrite code in order to
work with multiple libraries. This process can be very painful given that the
translation is not seamless. The array and dataframe API standards aim to
address this issue by specifying standardized APIs for the most common array
and dataframe operations.

Our goal is not to take an existing API and use it as the new standard, as good
reasons often exist for the current inconsistencies and diversity among current
libraries. For instance, the most obvious candidates for existing APIs are NumPy
for arrays and pandas for dataframes. However, these libraries were not
designed with non-CPU devices, graph-based libraries, or JIT compilers in mind.
Choices made in this new API standard are often aligned with these APIs as
reference, but the design choices are different, where necessary, in order to
ensure that all existing and future array and dataframe libraries can adopt and
adhere to the same set of common operations.

09

Consortium formation
and goals

The Data APIs consortium comprises both maintainers of array
and dataframe libraries and the industry stakeholders who
depend on those libraries. The consortium’s goals are twofold.
The first goal is to enable writing code and packages which can
support multiple array and/or dataframe libraries. The second
goal is to facilitate interchange among the array and dataframe
data structures.

The consortium is sustained by industry stakeholders, who
sponsor and fund the required engineering, technical writing,
and participation of key community contributors. A working
group sets the high-level goals, requirements, and user stories
necessary to start making initial decisions. With this framework
in place, engineers build required tooling, prepare data, and
draft specification documents. The specification drafts undergo
multiple iterations based on working group feedback. Once
specification drafts have a concrete outline, input from library
maintainer members is requested. Upon working group
approval, drafts are released as a Request for Comments (RFC)
as part of a public review process.

10

Throughout the standardization process, certain decisions are defined as in and
out of scope. The objectives defined as in scope include syntax and semantics of
functions and objects in the API, casting rules, broadcasting, indexing, Python
operator support, data interchange, and device support. However, the
objectives do not include execution semantics, non-standard data types,
masked arrays, I/O routines, array object subclassing, and C APIs. Accordingly,
task scheduling, parallelism, lazy evaluation, error handling, and comprehensive
behavior of invalid inputs to functions and methods are not in scope.

For 2021, the objectives were as follows:

Define standardization methodology.

Develop the tooling necessary to support the standardization methodology.

Publish an array API standard RFC.

Publish a dataframe interchange protocol RFC.

FInalize 2021.0x API standards after community review.

11

Progress in year 1
a) Timeline
A timeline covering the progress of the consortium since its initial
meeting is shown below.

May 2020

August 2020

November 2020

February 2021

First Consortium meeting
14/05/2020

Public announcement of the
consortium

17/08/2020

Announcement of the array API
10/08/2020

First discussion of the Array API
standard adoption in NumPy (NEP
47)

21/02/2021

August 2021
Draft implementation of Data-
Frame Interchanged Protocol in
Vaex

12/08/2021

Draft implementation of Data-
Frame Interchanged Protocol in
cuDF

19/08/2021

Experimental namespace imple-
mentation of the Array API stan-
dard in NumPy

23/08/2021

Announcement of the dataframe
interchange protocol

24/08/2021

September 2021
CuPy implementation of the Array
API standard

26/09/2021

12

The proliferation of array and dataframe libraries is reflective of the
heterogeneity in use cases and hardware. Accordingly, to ensure that the
specifications produced by the consortium adequately address cross-cutting
concerns and find general applicability, consortium membership must be a
representative cross-section of array and dataframe libraries and their
stakeholders. To this end, the consortium sought to ensure membership
representation of the most commonly used array and dataframe libraries.

As of 31 December 2021, the following array libraries are represented in the
consortium:

b) Organizational goals

NumPy

CuPy

PyTorch

JAX

Dask

TensorFlow

Apache MXNet

13

As of 31 December 2021, the following dataframe libraries are represented in the
consortium:

IInstitutional support of array and dataframe libraries is critical to their continued
success and evolution. To foster collaboration and dialogue among libraries and
industry stakeholders, the consortium sought membership of industry partners
representing a cross-section of hardware vendors, development sponsors, and
end-users. As of 31 December 2021, the following industry partners are
represented in the consortium:

pandas

cuDF

Vaex

Modin

Ibis

Dask

Koalas

Apache Arrow

Google Research

Intel

Microsoft

The D. E. Shaw Group

LG Electronics

Quansight

14

c) Tooling

Since its inception, the consortium has held weekly working group meetings,
which alternate between array and dataframe topics. In 2021, the consortium
held 19 meetings focused on array topics and 18 meetings focused on
dataframe topics.

In order to understand the Python data API landscape, the consortium
developed tooling for assessing API divergence, recording downstream usage,
and testing specification compliance. The current list of available tools is as
follows:

Array API comparison: https://github.com/data-apis/array-api-comparison
Dataframe API comparison:
https://github.com/data-apis/dataframe-api-comparison
Python record API: https://github.com/data-apis/python-record-api
Array API standard test suite: https://github.com/data-apis/array-api-tests

The array API and dataframe API comparison tools facilitate the analysis of the
commonalities and differences across libraries with the goal of deriving a
common API subset suitable for standardization. By analyzing commonalities
and differences, the working group can better ensure consistency in attribute
and method names and positional and keyword arguments. The array API
comparison tooling supports the following array libraries: NumPy (which serves
as the reference API), CuPy, Dask, JAX, MXNet, PyTorch, Pydata/Sparse, and
TensorFlow. The dataframe API comparison tooling supports the following
libraries: pandas (which serves as the reference API), Dask, cuDF, Vaex, Koalas,
Ibis, and Modin.

15

The python record API tooling is meant to understand how a target Python
module is used by downstream consumers. The tooling instruments all
function calls when running a library module to obtain API usage information
for a target library. Upon running the test suite of a downstream library,
collected data is used to derive synthetic APIs. The synthetic APIs are then
compared across downstream libraries to access and rank common API usage
patterns. Understanding usage patterns is an important component of the
standardization process, as such understanding facilitates a data-driven
decision making process and ensures that standardization efforts satisfy
real-world use cases and downstream consumer needs.

The array API standard test suite enables a target array library to measure array
API standard compliance. Similar to a unit testing framework, the test suite
runs a battery of tests to verify that array libraries are specification compliant.
By providing a ready-to-run test suite, array libraries can leverage test-driven
development to both accelerate library development and quickly detect
regressions upon library changes.

16

d) Methodology

Initial consortium discussions focused on how to organize and approach the
standardization process. One outcome of these discussions was the
determination that arrays and dataframes each required their own
standardization methodology due to their diverging needs, use cases, and
ecosystem maturity. Accordingly, array and dataframe discussions took place
on parallel tracks which arrived at different methodologies with their own
results.

For both array and dataframes, a necessary first step was to build API
comparison tools in order to provide a high level overview of common APIs,
design patterns, and requirements. Comparison of array and dataframe
libraries, respectively, not only aided the discovery of common APIs, but also
captured the current state of fragmentation across the PyData ecosystem.
Subsequently combining the comparison data with usage data obtained from
the Python record API tooling allowed finding the most commonly used APIs
which could then be used as a starting point for standardization.

The first array standardization milestone was defining a common array data
structure. Next, a common API subset was proposed, approved, and
subsequently included in the standard. This subset primarily included APIs for
element-wise array operations, such as the computation of transcendental
functions, value comparison, and arithmetic. Standardization efforts then
progressed to non-trivial functions (e.g., reductions, array creation and
manipulation, and linear algebra) where the working group sought to
understand API design fragmentation and arrive at minimal, unified APIs
capable of satisfying individual array library requirements (e.g., device
agnosticism, copy-view behavior, and supported data types).

17

The evolution of the array API standard specification is an iterative process in
which key maintainers continually monitor, review, and guide standardization
efforts. Once an initial draft proposal is ready, the proposal is made public as an
RFC in order to solicit community feedback. Once a proposal is approved,
reference array libraries begin implementing the proposed features and/or
changes, providing feedback throughout the process in order to further refine
the proposal. Reference library implementations subsequently provide other
libraries a starting point for their own efforts to ensure conformance with the
array API specification.

In contrast to array libraries which enjoy significant agreement and have
design requirements which are relatively well understood, dataframe libraries
are wildly divergent in both their implementations and requirements. Among
dataframe libraries, the definition of a dataframe varies significantly, resulting
in high fragmentation. As a consequence, applying the same methodology as
used for array API standardization proved infeasible—namely, finding and
standardizing common API subsets. Accordingly, standardization efforts
focused on the fundamental problem of interchanging data between
dataframe libraries, thus leading to a dataframe interchange protocol. Similar
to array API standardization, the protocol followed a similar release schedule:
proposal, RFC, community feedback, and reference library implementations.

At the time of this report, multiple array and dataframe libraries are working on
specification compliance. Their efforts help uncover edge cases, challenges,
and needs for further specification refinement, thus feeding an iterative
process for specification evolution.

Array API standard
a) Current state

The array API specification contains one array object, eleven data
type literals, one device object, four constants, and more than 125
functions for array creation and manipulation, element-wise
mathematics and comparison, statistics, and linear algebra. The
first version of the specification includes a linear algebra
extension, but does not yet include support for complex number
data types.

The specification defines a minimal array object with associated
attributes and methods. Attributes include those for returning
the number of dimensions, shape, size, data type, device, and
transpose. In order to support native Python operators, the
specification defines expected behavior for a common subset of
dunder methods. The specification further defines an additional
array object method for array interchange via DLPack. An array
object is expected to support the following data types: bool,
(u)int8/16/32/64, and float32/64.

A few design topics have proved difficult to standardize, resulting
in ongoing discussions concerning expected behavior and
requirements. These topics include mutability and copies/views,
data-dependent output shapes, and device-aware zero-copy
control.

18

Mutable operations are important for strided in-memory array
implementations, such as in NumPy. However, for libraries based on immutable
data structures and/or delayed evaluation, such as JAX, MXNet, Dask, and
TensorFlow, mutable operations are problematic. To accommodate both needs,
the specification requires support for inplace operators and slice assignment,
but the specification does not require support for an out keyword in
element-wise operations and includes a warning to steer users away from
mixing mutation operations with views, as doing so may result in
implementation-specific behavior.

Data-dependent output shapes are problematic due to static memory
allocation requirements and delayed evaluation as found in array libraries
employing graph-based computational models (e.g., TensorFlow, JAX, Dask,
PyTorch, and others). The specification accommodates these libraries by
identifying operations having data-dependent output shapes and making these
operations optional.

Finally, the specification includes a device-aware zero-copy protocol using
DLPack. This protocol allows for array interchange and interoperation. The
protocol allows copying array data between arbitrary devices and supports
multiple data types and basic array attributes. To support this protocol, the
specification includes a from_dlpack API and defines a mechanism for future
extensions.

The array API standard is currently published for community review. Open
discussion points include specification extensions (FFTs, random number
generation, and deep learning), additional API standardization candidates, and
view reinterpretation. The API specification is available on the publicly accessible
consortium website. Community feedback can be provided by opening an issue
on the specification’s GitHub repository. For previous discussions, one can
consult meeting minutes and existing issues and pull requests as found on
GitHub.

19

b) Adoption
NumPy has been, and continues to be, a primary reference implementation
for array libraries. NumPy’s adoption of the array standard is a critical first step
in ensuring general adoption among both libraries and users and galvanizing
other libraries to commence work on specification compliance. To this end,
NEP 47 was proposed and merged in the NumPy repository. Following NEP
47, an experimental implementation of the standard was merged into NumPy
under a dedicated array_api namespace.

In addition to NumPy, PyTorch, CuPy, and MXNet have moved toward
specification adoption. PyTorch is adding support for the standard in its main
namespace (issue 54581) with some issues remaining to be resolved before
achieving full compliance (tracking issue 58743). Endeavoring to be a drop-in
NumPy replacement, CuPy agreed to adopt the standard (issue 4789) and is
following the experimental NumPy implementation by adding support for the
standard in a dedicated array_api namespace. MXNet proposed standard
adoption in RFC 20501 and is tracking adoption in issue 20579.

JAX, Dask, and TensorFlow have verbally committed to adopt the array API
standard; however, their progress toward adoption has not been made
publicly available.

20

c) Next steps

While the consortium has made significant progress toward array API
standardization, much work remains to be done. Future work may be broken
down into four areas.

Implementation. Accelerating adoption of the standard is critical to
allowing downstream libraries, such as SciPy, Scikit-learn, scikit-image,
and other domain-specific libraries, to begin using the standard and
support array library interoperability.

Compliance. Completion of the library-independent test suite is
necessary for measuring specification compliance, guiding array library
development, and providing a mechanism for downstream users to
access adoption progress across the PyData ecosystem.

Extension. A specification is a living document and, as array libraries
continue to evolve, so too must the specification. Opportunities for
further API extension include standardized APIs for complex numbers,
FFTs, deep learning, and random number generation.

Outreach. The faster the ecosystem adopts the standard, the sooner the
consortium can focus efforts on meeting the needs of current and
future array libraries. Community outreach is necessary to accelerate
adoption. Outreach may consist of blog posts, tutorials, conference talks,
prototype implementations for downstream API consumers, and
community engagement on issue trackers and developer channels.

21

Dataframe interchange
protocol
a) Current state

Dataframes have presented significant challenges for
standardization given their implementation heterogeneity and
complexity. Among dataframe libraries, the very definition of
what constitutes a dataframe varies. Accordingly, rather than
attempt to standardize a complete API specification similar to
arrays, efforts were focused on standardizing a dataframe
interchange protocol in order to allow zero-copy data
interchange among dataframe libraries.

For this purpose, the consortium defined a minimal dataframe
as an ordered collection of columns which has the following
characteristics:

22

A dataframe or column may be chunked (i.e., data may not
be contiguous in memory).

A column is defined as a one-dimensional array with a data
type and missing data support.

Column names must be unique strings.

Figure 3. A conceptual model of a minimal dataframe.

Building on this working dataframe model, the consortium proposed a
dataframe interchange protocol to allow data interchange change among
dataframe libraries. The protocol provides a basic means for inspecting
dataframe properties, such as the number of columns, column names, and
column data types. The protocol does not assume a particular dataframe
implementation, instead choosing to describe memory down to the level of
contiguous one-dimensional blocks of memory (i.e., buffers). By specifying at
the buffer level, connecting this protocol with the array API standard is possible
via DLPack with the restriction that the libraries involved in the interchange
must all support the device on which the data resides.

As part of the protocol, the consortium proposed a from_dataframe API for
dataframe libraries to include in their top-level namespace. This API provides a
standardized API for dataframe creation and a universal mechanism by which
dataframe libraries can construct a library-specific dataframe instance from any
other dataframe object. As a consequence of this protocol, libraries which
consume dataframes will enjoy enhanced portability and be able to better
support dataframe object interoperation.

The current version of the dataframe interchange protocol is available for public
review. Community feedback can be provided by opening an issue on the
specification’s GitHub repository.

23

b) Adoption
Similar to NumPy, pandas serves as a primary reference implementation for
dataframe libraries. Thus, pandas’ adoption of the interchange protocol is a
critical first step in ensuring general adoption among dataframe libraries. To
this end, a prototype pandas implementation of the interchange protocol was
drafted with the goal of moving to the pandas repository upon further
community refinement and feedback.

In addition to pandas, cuDF and Vaex have working draft implementations of
the protocol (see cuDF 9071 and Vaex 1509).

c) Next steps
Once the dataframe interchange protocol is more widely adopted, focus will
shift toward specifying a more complete dataframe API. In contrast to array
libraries, dataframe library maintainers express less general agreement
regarding API design and requirements. Accordingly, standardization efforts
will demand tailored methodologies for dataframe API standardization.

Initial work will be limited to a minimal developer-focused dataframe API with
clear semantics, no performance cliffs, and explicit APIs. The primary goal will
be to distill the high complexity of dataframe APIs into a core set of
composable functions from which higher order functions can be derived. This
set of functions will satisfy the dual demands of allowing end-user API
specialization and providing a lower-level intermediate layer for common
operations over heterogeneous backends.

Note: Since this report was finalized on 31 December 2021, the consortium
workgroup has shifted focus to standardizing user-focused pandas API
behavior with plans of returning to a developer-focused dataframe API
toward the end of 2022/beginning of 2023. Initial 2022 priorities will be posted
on the data-apis/dataframe-api issue tracker.

24

https://github.com/data-apis/dataframe-api

What’s next in 2022
The consortium is aiming for long-term sustainability.
Achieving this aim requires accelerating specification
adoption, measuring compliance, and soliciting new and
continued sponsorships from key stakeholders. In 2022, the
array API specification will release an updated revision which is
projected to include complex number data type support, fast
fourier transforms (FFTs), and additional APIs for common
array operations. The dataframe API will draft a minimal
developer-focused API specification exposing APIs which
end-user dataframe APIs can target independent of device.
And finally, continued outreach to array and dataframe library
communities will ensure increased adoption, compliance, and
alignment.

25

A proposed roadmap is provided below.

Figure 4. Proposed roadmap for 2022.

26

Acknowledgements

As of 31 December 2021, consortium members, along with their
sponsor and array/dataframe library affiliations, are as follows:

Aaron Meurer (Quansight)
Adam Paszke (Google Research, PyTorch, JAX)
Alex Baden (OmniSciDB)
Andreas Mueller (Microsoft)
Areg Melik-Adamyan (Intel)
Arvid Bessen (The D. E. Shaw Group)
Ashish Agarwal (Google Research, TensorFlow)
Ashwin Srinath (cuDF)
Athan Reines (Quansight)
Carlo Curino (Microsoft)
Devin Petersohn (Modin)
Edward Loper (Google Research, TensorFlow)
Hyukjin Kwon (Apache Spark, Koalas)
Javad Heydari (LG)
Jeff Reback (pandas, Ibis)
John Kirkham (Dask)
Joris Van den Bossche (pandas, GeoPandas, Apache Arrow)
Leo Fang (CuPy)
Maarten Breddels (Vaex)
Markus Weimer (Microsoft, MXNet)
Matthew Barber (Quansight)
Mike McCarty (NVIDIA)
Oleksandr Pavlyk (Intel)

a) Members

Current

27

Ralf Gommers (Quansight, NumPy)
Rohan Jain (Google Research, TensorFlow)
Sheng Zha (Apache MXNet, ONNX)
Stephan Hoyer (Google Research, JAX, NumPy, XArray)
Stephannie Jiménez Gacha (Quansight)
Takuya Ueshin (Apache Spark, Koalas)
Vasily Litvinov (Intel)
Xiao Li (Apache Spark)

Emeritus

Alex Passos (Google Research, TensorFlow)
Anthony Scopatz (Quansight)
Keith Kraus (cuDF)
Marc Garcia (Quansight, pandas, Ibis)
Mohak Shah (LG)
Paige Bailey (Google Research, TensorFlow, JAX)
Saul Shanabrook (Quansight)
Tiankai Tu (The D. E. Shaw Group)
Tom Augspurger (Dask, pandas)
Unmesh Kurup (LG)

28

b) Contributors

c) Sponsors

A list of consortium contributors may be found in the array API specification
README. In addition to the people listed, standardization efforts have
benefited from dozens of others who provided design feedback, organized
workshops and other outreach activities, and/or reviewed implementations of
API specifications in NumPy, CuPy, PyTorch, Vaex, and cuDF.

The engineering, technical writing, and organizational effort needed to
bootstrap this consortium and draft the first versions of the array and
dataframe API standards is supported by the following consortium sponsors:

29

“Announcing the Consortium for Python Data API
Standards”, 17 Aug 2020,
https://data-apis.org/blog/announcing_the_consortiu
m/

“First release of the Array API Standard”, 10 Nov 2020,
https://data-apis.org/blog/array_api_standard_release/

“An RFC for a dataframe interchange protocol”, 24 Aug
2021,
https://data-apis.org/blog/dataframe_protocol_rfc/

Ralf Gommers, “Standardizing on a single
N-dimensional array API for Python”, Apache MXNet
Day, 15 Dec 2020

Ralf Gommers, “Python array API standardization –
current state and benefits”, GTC, 10 Nov 2021

Yao-Lung Leo Fang, “High-Performance Python GPU
Programming with CuPy”, APS Scientific
Computation Seminar at Argonne National
Laboratory, 24 May 2021

Stephannie Jimenez, “Data APIs: Estandarización de
arreglos N-dimensionales y dataframes”, Scipy Latam,
12 Dec 2021

a) Blog posts

b) Talks

Additional content

30

Ashish Agarwal, Michael Bauer, Emilio Castillo, Ralf
Gommers, Adam Paszke, Wen-Ming Ye, Sheng Zha,
“NumPy API standardization across frameworks”,
Apache MXNet Day, 15 Dec 2020

Frederic Bastien, Michael Bauer, Ralf Gommers, Keith
Krauss, Adam Paszke, Vartika Singh, Sheng Zha,
“Standardizing on an Array API for Python across
Deep Learning Frameworks”, GTC, 13 Apr 2021

Athan Reines, Lais Carvalho, and Ralf Gommers,
“Python Data APIs Quickshop”, 20 Oct 2020,
https://youtu.be/b11wBxYCEGE

Ralf Gommers, Areg Melik-Adamyan, and Travis
Oliphant, “Building Common Standards for Python
Data APIs”, Code Together, 3 Nov 2021,
https://soundcloud.com/codetogether/building-com
mon-standards-for-python-data-apis

a) Panels

b) Webinars

b) Podcasts

31

Learn more
https://data-apis.org/annual-reports/

