array_api_extra.kron¶
- array_api_extra.kron(a, b, /, *, xp=None)¶
Kronecker product of two arrays.
Computes the Kronecker product, a composite array made of blocks of the second array scaled by the first.
Equivalent to
numpy.kron
for NumPy arrays.- Parameters:
a (array) – Input arrays.
b (array) – Input arrays.
xp (array_namespace, optional) – The standard-compatible namespace for a and b. Default: infer.
- Returns:
The Kronecker product of a and b.
- Return type:
array
Notes
The function assumes that the number of dimensions of a and b are the same, if necessary prepending the smallest with ones. If
a.shape = (r0,r1,..,rN)
andb.shape = (s0,s1,...,sN)
, the Kronecker product has shape(r0*s0, r1*s1, ..., rN*SN)
. The elements are products of elements from a and b, organized explicitly by:kron(a,b)[k0,k1,...,kN] = a[i0,i1,...,iN] * b[j0,j1,...,jN]
where:
kt = it * st + jt, t = 0,...,N
In the common 2-D case (N=1), the block structure can be visualized:
[[ a[0,0]*b, a[0,1]*b, ... , a[0,-1]*b ], [ ... ... ], [ a[-1,0]*b, a[-1,1]*b, ... , a[-1,-1]*b ]]
Examples
>>> import array_api_strict as xp >>> import array_api_extra as xpx >>> xpx.kron(xp.asarray([1, 10, 100]), xp.asarray([5, 6, 7]), xp=xp) Array([ 5, 6, 7, 50, 60, 70, 500, 600, 700], dtype=array_api_strict.int64)
>>> xpx.kron(xp.asarray([5, 6, 7]), xp.asarray([1, 10, 100]), xp=xp) Array([ 5, 50, 500, 6, 60, 600, 7, 70, 700], dtype=array_api_strict.int64)
>>> xpx.kron(xp.eye(2), xp.ones((2, 2)), xp=xp) Array([[1., 1., 0., 0.], [1., 1., 0., 0.], [0., 0., 1., 1.], [0., 0., 1., 1.]], dtype=array_api_strict.float64)
>>> a = xp.reshape(xp.arange(100), (2, 5, 2, 5)) >>> b = xp.reshape(xp.arange(24), (2, 3, 4)) >>> c = xpx.kron(a, b, xp=xp) >>> c.shape (2, 10, 6, 20) >>> I = (1, 3, 0, 2) >>> J = (0, 2, 1) >>> J1 = (0,) + J # extend to ndim=4 >>> S1 = (1,) + b.shape >>> K = tuple(xp.asarray(I) * xp.asarray(S1) + xp.asarray(J1)) >>> c[K] == a[I]*b[J] Array(True, dtype=array_api_strict.bool)