array_api_extra.cov¶
- array_api_extra.cov(m, /, *, xp=None)¶
Estimate a covariance matrix.
Covariance indicates the level to which two variables vary together. If we examine N-dimensional samples, \(X = [x_1, x_2, ... x_N]^T\), then the covariance matrix element \(C_{ij}\) is the covariance of \(x_i\) and \(x_j\). The element \(C_{ii}\) is the variance of \(x_i\).
This provides a subset of the functionality of
numpy.cov
.- Parameters:
m (array) – A 1-D or 2-D array containing multiple variables and observations. Each row of m represents a variable, and each column a single observation of all those variables.
xp (array_namespace, optional) – The standard-compatible namespace for m. Default: infer.
- Returns:
The covariance matrix of the variables.
- Return type:
array
Examples
>>> import array_api_strict as xp >>> import array_api_extra as xpx
Consider two variables, \(x_0\) and \(x_1\), which correlate perfectly, but in opposite directions:
>>> x = xp.asarray([[0, 2], [1, 1], [2, 0]]).T >>> x Array([[0, 1, 2], [2, 1, 0]], dtype=array_api_strict.int64)
Note how \(x_0\) increases while \(x_1\) decreases. The covariance matrix shows this clearly:
>>> xpx.cov(x, xp=xp) Array([[ 1., -1.], [-1., 1.]], dtype=array_api_strict.float64)
Note that element \(C_{0,1}\), which shows the correlation between \(x_0\) and \(x_1\), is negative.
Further, note how x and y are combined:
>>> x = xp.asarray([-2.1, -1, 4.3]) >>> y = xp.asarray([3, 1.1, 0.12]) >>> X = xp.stack((x, y), axis=0) >>> xpx.cov(X, xp=xp) Array([[11.71 , -4.286 ], [-4.286 , 2.14413333]], dtype=array_api_strict.float64)
>>> xpx.cov(x, xp=xp) Array(11.71, dtype=array_api_strict.float64)
>>> xpx.cov(y, xp=xp) Array(2.14413333, dtype=array_api_strict.float64)