array_api_extra.at¶
- class array_api_extra.at(x, idx=<object object>, /)¶
Update operations for read-only arrays.
This implements
jax.numpy.ndarray.at
for all writeable backends (those that support__setitem__
) and routes to the.at[]
method for JAX arrays.- Parameters:
x (array) – Input array.
idx (index, optional) –
Only array API standard compliant indices are supported.
You may use two alternate syntaxes:
>>> import array_api_extra as xpx >>> xpx.at(x, idx).set(value) # or add(value), etc. >>> xpx.at(x)[idx].set(value)
copy (bool, optional) –
- None (default)
The array parameter may be modified in place if it is possible and beneficial for performance. You should not reuse it after calling this function.
- True
Ensure that the inputs are not modified.
- False
Ensure that the update operation writes back to the input. Raise
ValueError
if a copy cannot be avoided.
xp (array_namespace, optional) – The standard-compatible namespace for x. Default: infer.
- Return type:
Updated input array.
Warning
(a) When you omit the
copy
parameter, you should always immediately overwrite the parameter array:>>> import array_api_extra as xpx >>> x = xpx.at(x, 0).set(2)
The anti-pattern below must be avoided, as it will result in different behaviour on read-only versus writeable arrays:
>>> x = xp.asarray([0, 0, 0]) >>> y = xpx.at(x, 0).set(2) >>> z = xpx.at(x, 1).set(3)
In the above example,
x == [0, 0, 0]
,y == [2, 0, 0]
and z ==[0, 3, 0]
whenx
is read-only, whereasx == y == z == [2, 3, 0]
whenx
is writeable!(b) The array API standard does not support integer array indices. The behaviour of update methods when the index is an array of integers is undefined and will vary between backends; this is particularly true when the index contains multiple occurrences of the same index, e.g.:
>>> import numpy as np >>> import jax.numpy as jnp >>> import array_api_extra as xpx >>> xpx.at(np.asarray([123]), np.asarray([0, 0])).add(1) array([124]) >>> xpx.at(jnp.asarray([123]), jnp.asarray([0, 0])).add(1) Array([125], dtype=int32)
See also
jax.numpy.ndarray.at
Equivalent array method in JAX.
Notes
sparse, as well as read-only arrays from libraries not explicitly covered by
array-api-compat
, are not supported by update methods.Examples
Given either of these equivalent expressions:
>>> import array_api_extra as xpx >>> x = xpx.at(x)[1].add(2) >>> x = xpx.at(x, 1).add(2)
If x is a JAX array, they are the same as:
>>> x = x.at[1].add(2)
If x is a read-only numpy array, they are the same as:
>>> x = x.copy() >>> x[1] += 2
For other known backends, they are the same as:
>>> x[1] += 2
Methods
__init__
(x[, idx])add
(y, /[, copy, xp])Apply
x[idx] += y
and return the updated array.divide
(y, /[, copy, xp])Apply
x[idx] /= y
and return the updated array.max
(y, /[, copy, xp])Apply
x[idx] = maximum(x[idx], y)
and return the updated array.min
(y, /[, copy, xp])Apply
x[idx] = minimum(x[idx], y)
and return the updated array.multiply
(y, /[, copy, xp])Apply
x[idx] *= y
and return the updated array.power
(y, /[, copy, xp])Apply
x[idx] **= y
and return the updated array.set
(y, /[, copy, xp])Apply
x[idx] = y
and return the update array.subtract
(y, /[, copy, xp])Apply
x[idx] -= y
and return the updated array.