exp¶
- exp(x: array, /) array¶
- Calculates an implementation-dependent approximation to the exponential function for each element - x_iof the input array- x(- eraised to the power of- x_i, where- eis the base of the natural logarithm).- Note - For complex floating-point operands, - exp(conj(x))must equal- conj(exp(x)).- Note - The exponential function is an entire function in the complex plane and has no branch cuts. - Parameters:
- x (array) – input array. Should have a floating-point data type. 
- Returns:
- out (array) – an array containing the evaluated exponential function result for each element in - x. The returned array must have a floating-point data type determined by Type Promotion Rules.
 - Notes - Special cases - For real-valued floating-point operands, - If - x_iis- NaN, the result is- NaN.
- If - x_iis- +0, the result is- 1.
- If - x_iis- -0, the result is- 1.
- If - x_iis- +infinity, the result is- +infinity.
- If - x_iis- -infinity, the result is- +0.
 - For complex floating-point operands, let - a = real(x_i),- b = imag(x_i), and- If - ais either- +0or- -0and- bis- +0, the result is- 1 + 0j.
- If - ais a finite number and- bis- +infinity, the result is- NaN + NaN j.
- If - ais a finite number and- bis- NaN, the result is- NaN + NaN j.
- If - ais- +infinityand- bis- +0, the result is- infinity + 0j.
- If - ais- -infinityand- bis a finite number, the result is- +0 * cis(b).
- If - ais- +infinityand- bis a nonzero finite number, the result is- +infinity * cis(b).
- If - ais- -infinityand- bis- +infinity, the result is- 0 + 0j(signs of real and imaginary components are unspecified).
- If - ais- +infinityand- bis- +infinity, the result is- infinity + NaN j(sign of real component is unspecified).
- If - ais- -infinityand- bis- NaN, the result is- 0 + 0j(signs of real and imaginary components are unspecified).
- If - ais- +infinityand- bis- NaN, the result is- infinity + NaN j(sign of real component is unspecified).
- If - ais- NaNand- bis- +0, the result is- NaN + 0j.
- If - ais- NaNand- bis not equal to- 0, the result is- NaN + NaN j.
- If - ais- NaNand- bis- NaN, the result is- NaN + NaN j.
 - where - cis(v)is- cos(v) + sin(v)*1j.- Changed in version 2022.12: Added complex data type support.